
The research program of the Center for Economic Studies
(CES) produces a wide range of theoretical and empirical economic
analyses that serve to improve the statistical programs of the
U.S. Bureau of the Census.  Many of these analyses take the form
of CES research papers.  The papers are intended to make the
results of CES research available to economists and other
interested parties in order to encourage discussion and obtain
suggestions for revision before publication.  The papers are
unofficial and have not undergone the review accorded official
Census Bureau publications.  The opinions and conclusions
expressed in the papers are those of the authors and do not
necessarily represent those of the U.S. Bureau of the Census. 
Republication in whole or part must be cleared with the authors.

TECHNOLOGY LOCKS, CREATIVE DESTRUCTION AND 
NON-CONVERGENCE IN PRODUCTIVITY LEVELS

By

Douglas W. Dwyer*

CES 95-6   April 1995

All papers are screened to ensure that they do not disclose
confidential information.  Persons who wish to obtain a copy of
the paper, submit comments about the paper, or obtain general
information about the series should contact Sang V. Nguyen,
Editor, Discussion Papers, Economic Planning and Coordination,
Center for Economic Studies, Room 1587, FB 3, Bureau of the



Census, Washington, DC  20233-6101, (301-457-1882) or INTERNET
address snguyen@info.census.gov.

ABSTRACT

This paper presents a simple solution to a new model that seeks
to explain the distribution of plants across productivity levels
within an industry, and empirically confirms some key predictions
using the U.S. textile industry.  In the model, plants are locked
into a given productivity level, until they exit or retool. 
Convex costs of adjustment captures the fact that more productive
plants expand faster.  Provided there is technical change,
productivity levels do not converge; the model achieves
persistent dispersion in productivity levels within the context
of a distortion free competitive equilibrium.  The equilibrium,
however, is rather turbulent; plants continually come on line
with the cutting edge technology, gradually expand and finally
exit or retool when they cease to recover their variable costs. 
The more productive plants create jobs, while the less productive
destroy them.  The model establishes a close link  between
productivity growth and dispersion in productivity levels; more
rapid productivity growth leads to more widespread dispersion. 
This prediction is empirically confirmed.  Additionally, the
model provides an explanation for S-shaped diffusion.     
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     See for example Dhrymes (1991), Bartelsman and Dhrymes (1991), Olley and Pakes1

(1992), Baily, Hulten, and Campbell, (1992) and Dwyer (1994).  This work is made possible
by the availability of plant level data at the Census Bureau's Center for Economic Studies.

     Recently, there has been much interest in why income per capita and aggregate productivity2

levels across countries do not converge faster (cf. Parente and Prescott, 1994; Kremer and
Thomson, 1993; Bernard and Jones, 1993).  Perhaps identifying the forces working against
convergence within an industry will be useful in understanding the process of convergence across
countries.
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I. Introduction

Many economists believe that competition weeds out the inefficient firms and plants,

providing a force for convergence in productivity levels over time.  Yet, recent empirical

work seems to contradict this hypothesis; persistent dispersion in productivity levels is

observed in many industries over a long time interval.  Nevertheless, the more productive

plants do grow faster and are less likely to exit.   This paper seeks to resolve this puzzle, by1

identifying the forces working against convergence.   The result is a workable model of2

industry evolution that is broadly consistent with the facts.  It predicts how industries with

rapid technical change differ and yields an explanation for the phenomenon of S-shaped

diffusion.  The model's implications are tested through a data set of over 13,000 plants from

21 different four-digit textile industries over 16 years, i.e., an extract of the Longitudinal

Research Database (LRD).

The model assumes the existence of a "best practice" that evolves exogenously over



     Therefore, costs of adjusting a plant's technology are strongly concave.  This is a model3

of plant vintages rather than capital vintages.  Capital is homogenous.

     Specifically, when plants are grouped into deciles according to total factor productivity4

(TFP), the ratio of the mean productivity of the ninth decile to second decile, hereafter the
TFPratio, commonly ranges from two to three.  

2

time.  A plant can only adopt the best practice by spending a fixed cost; otherwise a plant's

productivity level remains fixed.   Plants can expand their capital stock gradually through3

convex costs of adjustment.  In any instant, plants exhibit diminishing returns scale, but

returns to scale are constant in the long run.  This results in an industry evolution

characterized by new or retooled plants continually coming on line with a cutting edge

technology, gradually expanding and then exiting or retooling when they cease to recover

their variable costs.  

This model is designed to be broadly consistent with the following empirical facts. 

Plant productivity levels differ by a factor of two to three within a narrowly defined industry

and time period (Dhrymes, 1991; and Dwyer 1994).   The productivity level of a given plant4

has a large permanent component (Bartelsman and Dhrymes, 1991; Baily, Hulten and

Campbell, 1992; and Dwyer, 1994).  Productivity growth is largely an aggregation

phenomenon (Bartelsman and Dhrymes, 1991; Olley and Pakes, 1992; and Baily, Hulten and

Campbell, 1992), i.e., the more productive plants receive larger weights when computing the

aggregate level of productivity.  Entry and exit by plants plays only a minor role in aggregate

productivity growth (Baily, Hulten, and Campbell, 1992).  Within an industry, some plants

expand while others contract (Dunne, Roberts, and Samuelson, 1989; and Davis and

Haltiwanger, 1992).  These findings conflict with theories in which plants produce at a fixed



     R&D expenditures as a percentage of sales for R&D performing companies was a mere 0.45

per cent in 1980 in Textiles and Apparel (National Science Foundation, 1984).  Productivity
growth comes from new machinery developed in Germany, Switzerland, and Japan, and new
synthetic materials developed by the chemical industry (Cline, 1990).  With regards to price
taking, Bailey states that "industry concentration is not high when compared to major durable
goods producers such as auto and steel" (1988, page 4).  I measure close to constant returns to
scale for the 21 different textile industries (Dwyer, 1994a).

3

optimal size.  

This model confirms, in the context of a very classical model, what evolutionary

economists have long known: "today's cross-sectional dispersion (in productivity), its width

and its expected durability, should be recognized as an essential element of the productivity

growth process" (Nelson, 1981, page 1045).   In the absence of technical change it predicts

near convergence in productivity levels.  Industries with large entry costs, large adjustment

costs and rapid technical change are predicted to exhibit more widespread dispersion in

relative productivity levels.  Finally, this model can yield the phenomenon of S-shaped

diffusion curves.

The model is applied to the textile industry, which has rapid productivity growth in

spite of low R&D expenditures by firms.  It is my intention to use this application as a

benchmark of comparison for future studies of industries in which firm level R&D and

technical change are closely linked.  Additionally, the assumptions of constant returns to scale

and price taking are not obviously false in the textile industry.   Through the LRD, each5

plant's total factor productivity (TFP) is measured for 21 different four-digit textile industries,

which allows for comparisons across industries.  

Much of the observed dispersion in productivity levels turns out to be the product of

transitory idiosyncratic shocks and the mis-measurement of labor inputs; nevertheless, there is



     Ericson and Pakes (1994), and Jovanovic and MacDonald (1994), construct models in which6

firms invest to improve their technology and firms with better technologies are bigger: "firms
can be described as 'larger' and more 'technologically' advanced interchangeably (Jovanovic and
MacDonald, 1994, page 29)."  My model, in contrast, predicts the existence of dinosaurs, i.e.,
large old plants which are marginally profitable and downsizing in terms of employment.  In
Jovanovic (1982), firm growth is the process of a firm learning its optimal size.  Davis and

4

a sizeable persistent component to dispersion in productivity levels (Dwyer, 1994).  Indeed,

the more productive plants do grow faster and are less likely to exit (Table 2).  Furthermore,

industries with rapid technical change exhibit more widespread dispersion in relative

productivity levels as predicted by the theory (Figure 4).  This supports the argument that

widespread dispersion in productivity levels is intrinsically linked with the productivity

growth process.

Relation to the Literature

Many models have been offered to explain why plants differ in equilibrium.  Market

power stemming from product differentiation has been used to explain persistent differences

in profit rates (cf. Pakes' review of Mueller, 1987).  Selection and technical change, in

contrast, have been used to explain why some plants expand while others simultaneously

contract within one industry (Jovanovic, 1982; Davis and Haltiwanger, 1992; Hopenhayn,

1992a; Caballero and Hammour, 1994).   Absent from these recent models of industry

equilibria is a concept of firm expansion; they assume that conventional inputs can be quickly

adjusted and therefore plants always produce at their optimal size.   These models rely on6



Haltiwanger (1992), however, find that passive learning only accounts for 11-13 per cent of job-
reallocation.  Therefore, it seems unlikely that passive learning alone can account for a
substantial proportion of productivity growth.

     Papers that employ product differentiation and a downward sloping demand curve include7

Segerstrom (1991) and Caballero and Jaffe (1993).  Examples of increasing marginal costs
include, Caballero and Hammour (1994) and Hopenhayn (1992b).   

5

either increasing marginal costs (sometimes an arbitrary capacity constraint) or a downward

sloping demand curve to generate a unique maximizing level of output for each plant and an

equilibrium in which plants differ.  7

Economists abstracted away from firm expansion because models with expansion by

the representative firm were unable to explain the size distribution of firms (see Jovanovic,

1982).  Early empirical studies supported Gibrat's law--firm size seemed to be independent of

firm growth.  Therefore, models of firms with constant returns to scale, equal productivity

levels, and convex costs of adjustment seemed consistent with empirical knowledge (see

Lucas, 1978).  Other empirical work, however, showed that small firms grow faster but are

more likely to fail (Mansfield, 1962).  This made the span of control viewpoint--the viewpoint

that managerial talent differed and each manager had a finite span of control, i.e., diminishing

returns to scale--appealing--because it generated a non-degenerate distribution of production

inputs across managerial quality (Lucas, 1978; Calvo and Wellisz, 1978; and Jovanovic,

1982).  

No one believed, however, that firms instantly reached their optimal size.  Lucas noted

that his model is a "limiting case of a model in which there are adjustment costs of

rearranging assets among managers" (Lucas, 1978, page 513).  Furthermore, he notes that his

theory "predicts the size distribution of firms, but only given the distribution of persons by



6

managerial talent" (Lucas, 1978, page 510).  This paper demonstrates that if the distribution

of managerial talent, in my case plant productivity levels, is not fixed over time, then Lucas's

limiting case may never be reached even approximately.  Consequently, it is no longer

necessary to assume diminishing returns to scale to yield a non-degenerate distribution of

production inputs across productivity levels/managerial talent.  

In the real world, many plants do not appear to be at their optimal size.  Plants with

higher levels of productivity grow faster in terms of real value added, total employment and

capital stock (Table 2).  Furthermore, the fact that share effects--changes in a plant's relative

size--play an important role in determining aggregate productivity growth suggests that

expansion by more productive plants plays an important role in the evolution of an industry. 

Arguing that this phenomenon is only the product of passive learning is problematic because

entry and exit only play a minor role in determining aggregate productivity growth (Baily,

Hulten and Campbell, 1992).  

In practice we observe close to constant returns to scale when measuring production

functions (cf. Dwyer 1994).  In some industries the approximation of price taking seems

appropriate.  These two assumptions imply that a firm supplies either zero, indeterminate, or

infinite output, which implies that either all plants are equally productive, or that adjustment

of production inputs is not instantaneous.  Yet, plants differ in all industries.  Therefore,

incorporating convex costs of adjustment into models in which firms differ is a natural

extension of the literature, because it allows one to model firm differences in a competitive

industry with constant returns to scale technology.  

There have been other attempts to model investment in the context of technical



     Nelson and Winter model technical change as the outcome of a search for either labor or8

capital saving innovations.  Iwai models both innovation and imitation.  Klepper and Graddy
create a selection model consistent with empirical regularities regarding the evolution of new
markets.  In these models firms do not base their expansion decisions on forward looking
rational expectations.

     Lach and Rob (1993) create a discrete analogy to my model; innovations are discrete9

improvements upon the previous generation and there are a finite number of firms who compete
in a Cournot oligopoly setting.  Lach and Rob, however, endogenize technical change and
assume that installation costs are zero.  They solve for the case in which innovations are drastic
enough that no one chooses to invest in an old technology, that is existing firms choose not to
expand.  My model, in contrast, shows that plants will invest in old technologies provided it is
costly to adopt the most recent technology. 

7

change.  Nelson and Winter (1982), Iwai (1984a and 1984b), and Klepper and Graddy (1990),

create similar models which endogenize technical change while modeling the rate of firm

expansion as an increasing function of its earnings, i.e, an arbitrary investment rule.  8

Performing comparative analysis on models with arbitrary decision rules is problematic,

because the results may not be robust to economic agents adapting their decision rule to the

new economic environment.  To my knowledge this paper is the first to solve and characterize

a competitive industry equilibrium, with technology locks, in which plants choose when to

enter, when to exit, how much to invest in capital, and how much to produce in order to

maximize the present discounted value of profits.   9

 The next section develops a model of industry evolution in which convex costs of

adjustment determine how resources are reallocated towards the more productive plants and

characterizes the model's long run equilibria under the assumption of zero productivity

growth.  Section III further specifies the model, proves the existence of an equilibrium that

turns out to be a balanced growth path, and derives several comparative dynamics.  Section

IV demonstrates that the model can predict an S-shaped diffusion curve.  Section V confirms



8

the model's prediction that textile industries with more rapid technical change will exhibit

more widespread dispersion in productivity levels.  Concluding remarks finish out the paper. 

The first appendix provides a comprehensive table of symbols used in the paper.  The second

appendix provides the mathematical details of the proofs and formalizes the plant's optimal

control problem.
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II. A Model of Industry Evolution Through Creative Destruction

This section first describes a model of industry evolution and defines its equilibrium

path.  It then demonstrates several properties of the equilibrium price path and the plant's

maximization problem assuming an equilibrium exists.  Finally, it characterizes the model's

long run equilibria in the absence of technical change.  The most important element of the

model is the specific concept of technical change.  The other element of the model that is not

entirely standard is the concept of plant expansion.  The remaining elements are standard and

necessary to define an industry equilibrium.  Each element is described in turn.

The technology frontier is assumed to move outward according to an exogenously

specified path.  Let b  represent the cutting edge productivity level at time t; b  is at t

nondecreasing and continuous function from ú to ú ; time is continuous and begins at+

negative infinite.  In order to get to the cutting edge productivity level a plant has to pay a

fixed cost, F $ 1 and for this fixed cost a plant receives one unit of capital; K  = 1, where Ktt tt

is the capital stock of a plant born at date t at date t.  Both the price of capital and the initial

size of a plant are normalized to one.  Therefore, a new plant pays 1 for the capital and F-1 for

the technical known-how associated with adopting the cutting edge technology.  A plant's

productivity level remains fixed over time until it retools; let b  denote the productivity levels

of a plant born or retooled at date s.  There are a continuum of plants in this model.     

In order for a plant to expand its capital stock, it must pay for the new capital and pay

a cost associated with disrupting the factories operations, i.e., an adjustment cost.  In order for

a plant to expand at the rate of I = dK/dt, it must pay a cost of I(1+((I/K)) per unit time,

where 1 is the price of capital and ( is the per unit cost of installing a unit of capital.  It is



     This specification is chosen because it yields an intuitive endogenous exit condition; a plant10

exits when it ceases to recover its variable costs.  Other specifications are possible. 

10

assumed that the disruptiveness of installing a new unit of capital is in proportion to the size

of a plant;  two plants expanding at a rate of 10% per year pay the same cost of adjustment

per unit capital regardless of their relative size.  Total adjustment costs, I((I/K), are assumed

to be convex.  This specification closely resembles that of Blanchard and Fischer (1989,

pages 58-61).  Note that a plant pays a cost for adopting its new technology that it is in

proportion to its initial size.  In order to expand it does not have to pay this cost again. 

Therefore, to expand slowly costs strictly less than building a new plant; a plant will typically

want to expand following entry.    

A plant produces with a constant returns to scale production function that employs

labor, L, and capital, K.  Technical change is assumed to be Hicks neutral; therefore bs

represents total factor productivity.  Let y  = b M(K ,L ) be the output per unit time of a plantst s st st

with productivity b employing K units of capital and L units of labor, where the subscripts s

and t denote the date of entry/retooling and the current time period respectively.  M is

assumed to be constant across plants and time.  Let w and * be the per unit rental cost of labor

and per unit operating cost of capital per unit time, respectively.  Both w and * are assumed to

be constant.  The per unit cost of capital is an operating cost that can only be avoided by

shutting down the plant; investment is irreversible.   A plant maximizes the present10

discounted value of cash flows for a given discount rate, r.  

There is an inverse downward sloping industry demand curve, p=D(Y), where p is

price and Y is industry output.  This completes the description of the model.  The assumptions
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on functional forms are specified and number below.  We are now ready to state the plant's

problem and define an equilibrium path.      

Assumptions on Functional Forms:

A1. The inverse demand curve slopes downward:  D' < 0.

A2. Plants enter with 1 unit of capital, K  = 1.tt

A3. M(K,L) is homogeneous of degree 1, twice differentiable and concave; 
lim  MM/ML = 4; and lim  MM/ML = 0. L60 L64

A4. Investment is irreversible, I  $ 0.st

A5. Total adjustment costs are convex: 
if I=0 then ((0) = 0; 
if I > 0 then ((I/K) > 0 and ('(I/K) > 0; 
lim  ((I/K) = 4; and (, (', and ('' are continuous.I/K64

A6. The technology frontier shifts outward in a continuous manner: 
b  is a continuous and weakly monotonic function on ú.t

The Plant's Problem:

 A plant with productivity level b  chooses labor inputs (L ), an investment path (I ),s st st

and an exiting date (T ) to maximize the present discounted value of profits for a given prices

path:

(M1)



     This definition assumes that such a derivative exists, which implies that a positive mass of11

plants cannot enter in an instant. 
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The solution to M1, provided it exists, implies a labor demand curve (L *), an optimalst

investment function (I *), an optimal capital stock (K *), an optimal supply curve (y *) andst st st

an optimal exit date (T ).  Note that under this specification, a plant can expand slowly for lesss

than the cost of building a new plant.  Therefore, plants will want to expand following entry.   

Equilibrium:

In equilibrium there will be a rate of plants per unit time entering the industry.  Let Ct

be a function (C : ú6ú ) representing the number of new plants per unit time entering thet +

industry, where C  is defined as the derivative of the cumulative mass of entry at any given tt

(if E  denotes the total mass of plants that have entered in the time interval (-4,t], then C  /t t

dE /dt).   For an exogenous b , an equilibrium path is a p , C , and T  such that for all t:t t t t s
11

(1) All plants in an industry produce, invest and exit according to the solution to M1.

(2) The value of an existing new plant is equal to or less than the fixed cost of entry, and
equal to if entry is positive: V  # F and F = V  if C  > 0.tt tt t

(3) The quantity produced by all plants clears the output market: p  = D(Y ).t t

Y  is the sum of the optimal level of output of all plants in existence at time t.  At

property of the equilibrium, provided it exists, is that the date of exit is weakly monotonic in s

(Property 3).  Therefore, Y  can be written as:t



13

i.e., the integral of plant output over the birth dates of plants or over the age of plants (aG  beingt

the age of the oldest plant still in operation at date t).

Note that if F = 1, the per unit cost of building or retooling a plant is less than or equal

to the cost of expanding an existing plant.  Because a new or retooled plant is more

productive, entry or retooling has a strict advantage over expanding an existing plant when

F=1.  Therefore, when F is 1 this model collapses into a model in which plant size has an

arbitrary bound and all new capital is allocated to the cutting edge productivity level.  That is,

when F=1 the model becomes a vintage capital model that closely resembles Phelps (1962)

and Caballero and Hammour (1994).  When necessary I assume that F is greater than one, and

these are the cases where the model's implications differ from those of a vintage capital

model.  

I am now ready to state four properties of the solution to M1, and a proposition about

the equilibrium.  They regard the recursive nature of the plant's problem.  The plant chooses

its labor inputs, L, to maximize instantaneous profits.  It then chooses its exit date, T, to avoid

negative profits.  Finally, it chooses its investment path, I , to maximize the presentJ

discounted value of future cash flows. 

Property 1: 

L * maximizes sJ
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This property is immediate since L is an unconstrained variable that only affects the

instantaneous rate of profits.

Property 2:

 There exists a function B(p,s) such that

i.e., instantaneous returns on capital net of investment are independent of the size of the plant.

Proof:

Standard application of Euler's theorem which states that the partial derivative of a

function that is homogenous of degree 1 is homogeneous of degree 0.

Property 3:

T  is nondecreasing in b .s s

i.e., a plant does not exit before a less productive plant.

Proof:

Immediate application of the fact that the return on capital, B, is increasing in

productivity, b  (see Appendix II).  This implies that T  is nondecreasing in s, provided b  iss s s

strictly increasing in s.  In the case that b  = b ,  it is convenient to assume that T  iss s' s
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nondecreasing in s.

Proposition 1:

Under assumptions A1-A6, provided an equilibrium exists, p  is continuous andt

nonincreasing.

Proof:

See Appendix II.  While tedious, the basic idea is simple.  A point of discontinuity in price

implies a discrete change in supply.  A discrete change in supply can only be brought about

by a positive mass of plants exiting, causing an increase in price.  An increase in price implies

either that some plants should not have exited or they should have exited earlier.  

Property 4:

T  solves B(p ,s) = 0, and is therefore independent of the optimal investment path I *,s T st

that is a plant exits when it no longer recovers its variable costs.

This property immediately follows from price being nonincreasing and B being

increasing in price.  Once B = 0, in the future B # 0 which implies that exiting does at least as

well as staying in business.  

Therefore, M1 can be rewritten as

(M2)



     Theorem 8, page 132; and Theorem A.5, page 415; respectively in Seierstad and Sydsæter12

(1987).
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Proposition 2: 

For a given price path, provided that T  is finite, a unique solution to M2 exists.  s

Proof:

In order to simplify the mathematics, I add the additional constraint:

This constraint is innocuous because in equilibrium it will never bind; the value of an

installed unit of capital is bounded above by the fixed cost of entry.  Existence is now a

standard application of the Filippo-Cesari theorem.  The solution is unique because eq #A.1

(see Appendix II) has a unique solution.   For clarity, this constraint is suppressed throughout12

the rest of the paper.

Appendix II characterizes the solution to M2 as an optimal control problem.  As is

standard in the investment literature, q is the value of an installed unit of capital.  If q # 1 then

I = 0, but if q > 1 then investment is positive and increasing in q.  If  B # r then q # 1.  That is,

if the current rate of return on capital is less than or equal to the discount rate, then the value

of an installed unit of capital is less than or equal to 1 because B  is nonincreasing in t.  Sincest

a new plant has a value of F and is 1 unit of capital, a new plant has a q of F and positive

investment occurs following entry provided F > 1.

In the absence of technical change, Proposition 3 shows that this industry has a set of
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stationary equilibria--stationary in the sense that no one enters, exits, or invests and therefore

price and quantity produced remain constant--in which the most productive plant earns a

return on capital equal to the discount rate, B=r, and the least productive plant recovers its

variable costs.  That is, provided that the economy reaches one of these equilibria, it stays

there.  Since it is not necessarily the case that anyone will choose to enter with the cutting

edge technology, I adopt the following notation.  Let B and B& denote the productivity level of

the most productive plant in operation and the most productive technology available,

respectively, at date t.  Let p* solve B(p*,B) = r and aG solve B(p*,b ) = 0.  Finally, let W(B&,p)t-aG

denote the value of a new plant with productivity B&, under the assumption that price remains

constant at p .    *

Proposition 3:

Under assumptions A1-A6, if 

F $ 1,

D(*  C y *ds) = p*, t
t-aG s st

b  0 [B, B&] for all J > t, and J

W(B&,p*) < F, 

then an equilibrium exists characterized by no exits, no entrants, p  = p*, B(B) = r, and I  = 0,J sJ

for all J > t.  That is, the industry is in a stationary equilibrium at t.  

Proof:

I must show that: (1) it is optimal for all plants not to exit; (2) it is optimal for all plants

not to invest; (3) it is optimal for potential plants not to enter; and (4) supply remains constant. 



     Suppose not.  If B > r forever then q > 1 and I > 0 and price is falling implying that13

this equilibrium is not stationary.

     Proving these statements first requires that a solution to M2 exists for T = 4 and B14

approaching a limit of r asymptotically, which remains an open question.

18

(1)  Observe that B(b , p ) $ 0 for all J $ t and s $ t-aG. Plants born before t-aG will haves J

exited before or at t, since price is nonincreasing and continuous.  Therefore, any plant in

operation at t is at least indifferent between remaining in operation and exiting in the future.  

(2) I  = 0 for all plants because B # r which implies q # 1, for all plants.*

(3) By assumption.  Note that B = B& is sufficient to guarantee this condition because  VJJ

= *  re dJ = 1 # F, because B(b ) = r and I*  = 0, for all J and v > t, therefore not4 -r(J-t-x)
t +x J Jv

entering does at least as well as entering.

(4) Supply remains fixed, because no one exits, enters or invests.  Q.E.D.  

Clearly there are no other stationary equilibria with the property that the returns on

capital exceed the discount rate, B > r, for the most productive plant in operation.   Equilibria13

with B < r for the most productive plant in operation, while stationary, imply that some plant

behaved irrationally.  Therefore, the above set is the set of interesting stationary equilibria. 

Heuristically, in the absence of technical change, plants will enter as long as it is profitable,

and the most productive plant will continue to expand as long as B > r.  These two effects will

lower the price and force some plants out of business.  The rate of investment, however,

approaches zero as B approaches r; and therefore, the set of stationary equilibria is

approached asymptotically.   Observe that if F > 1, then entry will have ceased before t, and14

the stationary equilibria are approached by existing plants accumulating capital and shifting



     Strictly speaking, the ratio of B to the lower bound of the least productive plant in15

operation is independent of F.  I have not shown that a plant entered with productivity b . t-aG

     It is straightforward to let p = Y e , that is, to include aggregate demand growth.16 -1/F Nt

Everything that follows still holds except c = FN+(F-1)µ and Y = F(N+µ) in Proposition #3.^ ^
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the aggregate supply curve outward.  This capital accumulation drives the price down, forcing

some plants to exit after entry has ceased.  Note that the ratio of the most productive plant's to

the least productive plant's productivity levels in operation in any of these stationary equilibria

is independent of F.    15

In this section, I defined an equilibrium and proved that if it exists it exhibits a

nonincreasing continuous price path, and in the absence of technical change there exists a set

of stationary equilibria.  Whether or not assumptions A1-A6 are sufficient conditions for an

equilibrium to exist, however, remains an open question.         

III. Existence of an Equilibrium: A Balanced Growth Path

This section proves the existence of an equilibrium--it turns out to be a balanced

growth path--for a specific set of functional forms and proves several propositions

characterizing this equilibrium.  The equilibrium yields a time invariant distribution of plants

and capital across relative productivity levels.  Proposition 5 demonstrates that more rapid

technical change leads to more widespread dispersion in relative productivity levels. 

Additionally, Propositions 6, 7 and 8 show that the greater the cost of entry and expansion,

the larger the dispersion in productivity levels.

I assume a constant returns to scale Cobb-Douglas production function, a constant

elasticity of demand and a constant growth rate of the cutting edge productivity level.16



     Without loss of generality, I have set b  = 1.17
0
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A1'. p = Y -1/F

A3'. M(K,L) = K L , with " + $ = 1.$ "

A6'.  b  = b e  = e .  t 0
µt µt 17

It is straightforward to show that A3' implies 

where A = ("/w) $; and,"/$

The key to the existence proof (Proposition 4) is the following observation.  If price

falls at the rate of technical progress, then the plant's profits become a function of its age only. 

Therefore, I will define the following functions of a, where a represents the age of a plant

provided p  = p e .  Under this assumption,t 0
-µt

Letting a = t-s,
 

 

Additionally B  = 0 impliesGa



      x denotes (dx/dt)/x.18 ^
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where aG = T  - s, the life span of a plant, which is independent of its birth date.  Note that B  iss 0

the return on capital for any new plant, hereafter the initial return on capital.  Observe that the

life span of the plant approaches infinite as * approaches zero and the life span of plant is

zero when $ is zero.  The life span of a plant becomes infinite when there are no operating

costs of capital, because the marginal product of capital goes to infinite as output goes to zero.

The life span becomes zero when labor is the only input into the production process, because

the most productive plant instantaneously expands to dominate the industry.  Let K * be thea

capital function associated with the solution to:

(M3)

Proposition 4 (Existence of a Balanced Growth Path): 

Under assumptions A1', A2, A3', A4, A5, and A6', If K  = K * on [-aG, 0] and C  =s0 -s s

C e  on [-aG, 0], then there exists an equilibrium path defined by: 0
µ(F-1)s

(1) Y/F = -p = C/(F-1) = µ,  and ^ ^ ^ 18

(2) C  and p  that simultaneously solve0 0
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(initial condition #1)

and

(initial condition #2)

for all t.

In words, if at time 0 plants of age a (alternatively -s) have the capital stock associated

with the solution to M3 and the density of plants across productivity levels is consistent with the

growth path, then a balanced growth path exists such that: (1) C  and p  simultaneously solve the0 0

market clearing condition and the zero profit to entry condition; (2) output grows at the rate of

technical progress multiplied by the demand elasticity; (3) price falls at the rate of technical

progress; and (4) the number of new entrants increases at the rate of technical progress multiplied

by the elasticity of demand less one.

Proof: 

Appendix II demonstrates that the value of the plant is continuous and increasing in p ,0

i.e., V (p ) is strictly increasing in p , approaches zero as p  approaches (*/A)  and approaches0 0 0 0
$

infinity as p  approaches infinity.  Therefore, by the intermediate value theorem there exists a0

unique p  that satisfies the second initial condition.  That is, there exists one initial price, which0

implies an initial return of capital, that sets the value of a new plant equal to the fixed cost of

entry.  By the implicit function theorem, there exists an implicit function that solves initial



     The derivative of 19

with respect to C  is always negative and continuous; and the derivative with respect to p  existso 0

and is continuous on the given set; therefore, the conditions for the implicit function theorem
are satisfied.   
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condition 1, C (p ) defined on ((*/A) ,4).   Consequently, there exists a unique C  and p  that0 0 0 0
$ 19

satisfy initial conditions 1 and 2.  Additionally, as p  > (*/A) , the initial return on capital must0
$

be positive.

Now I must show that the growth path Y/F = -p = C/(F-1) = µ always satisfies the 3^ ^ ^

equilibrium conditions, for the p  and C  that satisfy the initial conditions.  It is given that price0 0

is falling at the rate of technical progress which implies that B  = B , which is independent of sst a

and t.  The life span of a plant is given by aG, which is also independent of s.  This implies that M2

and M3 are equivalent maximization problems under the specified growth path.  In any given

instant K  = K .  Furthermore, V  is a constant, because all new plants face the samest t-s tt

maximization problem.  This result combined with initial condition 2 implies that equilibrium

condition 3 is always satisfied.  The value of a new plant always equals the fixed cost of entry.

Equilibrium Condition 2 (market clearing) implies that:

p  = p e  = Y .t 0 t
-F -F µFt

Applying the specified growth path to the definition of Y , pulling terms involving tt

outside the integral, and invoking initial condition 1 implies:
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(Recall that "+$ = 1.)  That is, the specified growth path implies that Y  equals Y  multiplied byt 0

e , which implies that demand always equals supply.  Therefore, under the specified growth pathµFt

equilibrium condition 2 is always satisfied.  Q.E.D. 
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Figure 1:

Î b  = e  (the cutting edge plant's productivity)t
µt

• b  = (*/A) /p  = ((*/(*+B)) e (the marginal plant's productivity)t-aG t
$ $ µt

Now, I wish to consider how the rate of technical change affects the dispersion in

productivity levels in operation at any given time.  Because the life span of a plant is a constant

over time, the ratio of the most productive plant to least productive plant at any given time is a

constant.  Let



     The initial return on capital, B , is a more concrete concept than the initial price, p .20
0 0

Therefore, the comparative dynamics that follow will be motivated in terms of B .  Because the0

TFPratio is linear in p , however, the algebra is less cumbersome if performed in terms of p .0 0

Therefore, the TFPratio is differentiated with respect to p  in the comparative dynamics. 0
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Figure 1 illustrates that although the productivity levels of the cutting edge plant and the

marginal plant are both growing over time, the ratio of these two is a constant.  Furthermore, the

initial return on capital, B , is a sufficient statistic for the TFPratio.   The initial return on capital0

is the rate necessary to set the value of a new plant equal to the fixed cost of entry.   Observe that20

the TFPratio goes to 1 as $ goes to zero and goes to infinite as * goes to 0.  If labor is the only

input in the production process, the most productive plant instantly hires enough labor to drive

the competition out of business.  If there are no operating costs, a plant remains in operation

forever because its marginal product of labor goes to infinite as output goes to zero.   

 The next proposition demonstrates that more rapid technical change leads to larger

TFPratios.  The logic is simple; an increase in the rate of technical progress causes a plant's return

on capital to erode faster.  Attracting entrants, therefore, requires a higher initial return on capital.

A higher return on capital for the most productive  plant in operation lowers the productivity level

of plant that earns a zero return on capital, i.e., the marginal plant.  Because the productivity level

of the cutting edge plant is exogenously fixed, dispersion increases. 

Proposition 5:

Under assumptions A1', A2, A3', A4, A5, and A6', in equilibrium the TFPratio is increasing in
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µ.

Proof:

From the definition of TFPratio:

Initial condition 2 implies that:

=>

The last step follows because MV /Mp  > 0 and MV /Mµ < 0, as demonstrated in Appendix II.0 0 0

Therefore, 

Q.E.D. 

The next proposition demonstrates that the larger the entry costs the larger the TFPratio.

In words, an increase in the fixed cost of entry requires a higher initial return on capital in order

for the value of a new plant to continue to equal the fixed cost of entry.  This higher initial return

lowers the productivity level of the marginal plant at any point in time.

Proposition 6:

Under assumptions A1', A2, A3', A4, A5, and A6', in equilibrium the TFPratio is increasing in
F.

Proof:
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Initial condition 2 implies

MV /Mp  > 0 implies dF/dp  > 0, which in turn impliestt 0 0

Q.E.D.

This rather intuitive result differs from Proposition 3, where the dispersion in productivity

levels in a stationary equilibrium was independent of F.  This observation brings us to the next

proposition.   

Let B* solve:

That is, the initial return on capital that makes entrants indifferent between entering and not

entering provided the return on capital remains constant.  Recall that if F > 1 then the value of

an installed unit of capital for a new plant is F > 1, implying that q > 1.  In order for q to be

greater than 1, the return on capital must exceed the discount rate, i.e., B* > r.  Recall that in

Proposition 3, I proved that return on capital for the most productive plant in operation associated

with the set of stationary equilibria would equal r.  Under the assumption of a Cobb-
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Douglas production function this implies that the TFPratio associated with the stationary

equilibria is equal to (r/*+1) .  $

Proposition 7:

Under assumptions A1', A2, A3', A4, A5, and A6, in equilibrium, if F > 1 and µ > 0, then the B0

associated with the balanced growth path is bounded below by B*>r.  

Proof:

Suppose not.  Then V  < F for all t which implies C  = 0. Q.E.D. tt 0

 Thus the limit of the TFPratio as µ approaches zero, (B /(+1) , is greater than the* $

TFPratio associated with the stationary equilibrium when µ = 0.  This is the case because entry

must always occur if µ > 0.  If µ = 0 then investment continues after entry has ceased (if V  = F,tt

then q = F > 1), which drives down the return on capital and forces some of the less productive

plants out of business.  Therefore, the limit of the TFPratio as µ 6 0 is greater than the stationary

TFPratio associated with no technical change; an industry with arbitrarily slow but consistent

technical change will exhibit a larger TFPratio in equilibrium than an industry with zero technical

change.  

Now I will consider the affects of adjustment costs on the TFPratio.  If adjustment costs

were larger, one would expect more dispersion in productivity levels along the balanced growth

path because the most productive plants would expand more slowly and therefore need to earn

a higher initial return on capital to recover their fixed cost.  This intuition can be formalized by

letting ((I/K) = R'(I/K).  An increase in R increases adjustment costs and is expected to increase

the TFPratio.
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Proposition 8: 

Under assumptions A1', A2, A3', A4, A5, and A6', in equilibrium, if F > 1 then the TFPratio is

increasing in R.

Proof:

Therefore, if MV/MR < 0 then d(TFPratio)/dR > 0, because (MV/Mp ) and dTFPratio/dp  > 0.  In0 0

Appendix II, it is demonstrated that 

and strictly less than zero if F > 1; that is dTFPratio/dR is strictly positive provided it is optimal

for new plants to invest at a positive rate.  Q.E.D.

In this section, I proved the existence of an equilibrium for a specific set of functional

forms.  These functional forms are general enough to include, by appropriate parameter choices,

industries that are either capital or labor intensive, have elastic or inelastic industry demand

curves, and exhibit rapid or slow rates of technical change.  The link between the productivity

growth, the expansion process of plants, and the dispersion of relative productivity levels is

clearly established.  Note that Propositions 1, 2, 3, 4, and 5 hold if F=1, i.e., in a vintage capital

model.  Therefore, an equilibrium will exist and more technical change will result in a larger

TFPratio for both vintage plant and vintage capital models.  The implications that larger fixed

costs and installation costs yield larger dispersion in relative productivity levels, however, require



31

a concept of plant expansion.  Furthermore, the discontinuity in the TFPratio at µ = 0 relies on

the ability of plants to expand after entry has ceased.  Under a vintage capital model, the

prediction that more technical change will result in more dispersion in productivity levels applies

to machines, not plants.  Predicting what one would observe at the plant level requires explaining

why plants have different distributions of machinery across vintages.  

V S-Shaped Diffusion

Several papers have sought to explain the phenomenon of S-shaped diffusion curves--the

diffusion of a new technology begins gradually, speeds up and then slows down (cf. Jovanovic

and Lach, 1989; and Jovanovic and Macdonald, 1994).  Jovanovic and Macdonald make the

point that vintage capital models cannot generate S shaped diffusion curves, except in the

unlikely case that the distribution of capital across age is bell-shaped.  Consequently, most

explanations involve a technological or learning spillover, i.e., one firm benefits from the efforts

of another.      

In the context of my model, diffusion can be defined as the percentage of capital in

operation using a post t=0 technology.  At t=0, the diffusion is zero and at t=Ga it is complete. I

will consider the balanced growth path from Proposition 4 in the special case that the industry

demand curve has a unitary price elasticity (F=1).  In this case the number of new plants per unit

time and the total capital stock are both constants.  The diffusion of post t=0 technologies can be

writen as:
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Figure 2 Figure 3:

where K& represents the industries aggregate capital stock.  (Recall that  indicates the plant's birthst

date and the time period, respectively; a=t-s is age of the plant.)  If the diffusion path is increasing

and has an inflection point, it can be said to be S-shaped; in this case, D'(t) = K  must be positive,*
t

and D''(t) = I  must start off being positive and become negative before diffusion is complete.*
t

If F=1, i.e., a vintage capital model, then K  is a constant so the rate of diffusion is a constant.t

If F>1, a plant's level of investment, I , is initially positive and then falls until it hits zero when*
a

q  = 1.  Therefore, the rate of diffusion increases until q  = 1, and then remains constant untilt t

diffusion is complete.  

In order for this model to generate an S shaped diffusion curve, I must relax the

irreversibility constraint on investment.  It is straightforward to verify that if investment is



     It is critical that I is negative and finite when q is less than one.  The simplest specification21

to achieve this is to assume that adjustment costs are convex for I < 0, and that ( becomes 1
for a finite and negative I/K.      

     In this model the only source of productivity growth is creative destruction, i.e., new or22

re-tooled plants coming on line with the cutting edge technology and forcing out the less
productive plants.  Appendix III (available from the author upon request) allows existing plants
to gradually become more productive, i.e., productivity growth through the representative plant,
as another source of productivity growth.  It proves the existence of an equilibrium for such a
model and demonstrates that dispersion in productivity levels is independent of the magnitude
of productivity growth through the representative plant. 
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reversible, then a plant's optimal investment rate is initially positive and slows until q=1 and then

investment becomes negative as q falls below one.   Therefore, the distribution of plant size21

(measured in capital) across age is bell shaped (Figure 2) and the diffusion path is S-shaped

(Figure 3).  A model of plant vintage generates an S-shaped diffusion curve provided investment

is reversible and the elasticity of industry demand is unitary.  Diffusion begins slowly because

it is costly to adopt the new technologies.  Diffusion speeds up as expansion by plants with the

new technologies becomes increasingly important.  Finally, diffusion tapers off as plants with the

old technology gradually sell off their capital stock, rather than exiting the market.  The

phenomenon of S-shaped diffusion can be explained without information externalities and their

consequent welfare implications.    

VI. An Empirical Application  

If technical change in the textile industry is a product of creative destruction, then my

theory predicts that the four-digit textile industries with more rapid productivity growth will

exhibit more widespread dispersion in relative productivity levels.   Testing this hypothesis22

requires measuring dispersion in productivity levels in specific textile industries as well as the



     A plant specific measure of total factor productivity can be computed as:23

where RVA is real value added, TE is total employment, Book is the book value of capital, "
and $ are taken from estimates of a value added Cobb-Douglas production function, and the
subscripts  index the plant and time respectively. For further methodological details see Dwyerit

1994.
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rate of productivity growth in these industries.  

Through the LRD, the TFP of each plant in the textile industry is measured.23

Furthermore, the textile industry can be divided into 21 different four-digit industries.  From the

plant specific measures of productivity, three measures of industry productivity levels are

computed: (1) the mean of plant productivity levels; (2) the weighted average of plant

productivity levels, where the weights are value added; and (3) the aggregate productivity level,

which is an input weighted average of plant productivity levels.  The growth rates are then

computed by regressing the log of industry productivity onto time.  Table 1 reports the growth

rates for each four-digit industry according to each of the three measures of industry productivity.

Observe that regardless of measure, some industries consistently exhibit rapid productivity

growth (Hosiery, Except Socks, 2251; and Tire, Cord and Fabrics, 2296) while others exhibit

consistently slow productivity growth (Knit Underwear and Nightwear Mills, 2254; and Cordage

and Twine, 2298).   



     My theoretical measure of dispersion is the ratio of the most productive to least productive24

plant in operation at any given instant.  This measure of dispersion is chosen because: (1)
protecting confidentiality requires the grouping of observations; and (2) the first and tenth deciles
are avoided due to outlier problems stemming from faulty measurement, i.e., human error.  
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Table 1: Productivity Growth in the Textile Industry 1972-1987

SIC Growth of mean
TFP

Growth of average
TFP weighted by
value added

Growth of average
TFP weighted by 
inputs

Average
TFPratio

2261
2254
2298
2211
2253
2252
2262
2231
2283
2221
2295
2269
2297
2273
2257
2241
2282
2258
2299
2251
2296

0.013
0.014
0.004
0.021
0.022
0.023
0.029
0.041
0.029
0.036
0.037
0.039
0.047
0.044
0.036
0.038
0.051
0.041
0.037
0.074
0.080

0.013
0.014
0.020
0.024
0.020
0.034
0.031
0.031
0.031
0.031
0.040
0.059
0.034
0.057
0.034
0.038
0.045
0.044
0.046
0.084
0.126

0.011
0.014
0.016
0.019
0.023
0.025
0.025
0.026
0.030
0.032
0.037
0.037
0.039
0.040
0.040
0.041
0.043
0.046
0.051
0.081
0.088

3.02
2.88
3.16
2.48
3.05
2.34
2.70
2.69
2.33
2.32
2.89
3.36
2.79
3.79
2.96
2.48
2.72
2.99
3.02
3.38
4.69

In each four-digit industry, plants are grouped into ten ranks on basis of productivity, with

each group having the same number of plants in it.  That is, plants are ranked into deciles one

through ten, with one being the least productive and ten being the most.  The TFPratio is

computed from the means of the second and ninth decile.   The TFPratio typically ranges from24

between two and three; TFPratios as high as four are not uncommon, and there is no tendency
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towards convergence (Dwyer, 1994).  The time mean of the TFPratio is report in Table 1 for each

industry.

Table 2: Growth Rates and Exit Rates by Productivity Ranking

Decile GRVA GTE GBOOK EXIT

1
2
3
4
5
6
7
8
9
10

-0.204
-0.011
 0.025
 0.033
 0.079
 0.147
 0.132
 0.201
 0.172
 0.228

-0.109
-0.080
-0.067
-0.049
-0.045
 0.051
 0.008
 0.031
 0.050
 0.106

-0.070
-0.074
-0.079
-0.003
-0.056
 0.001
-0.012
 0.066
 0.037
 0.062

0.395
0.343
0.314
0.300
0.262
0.255
0.203
0.217
0.206
0.250

Columns 2-4 report the weighted average of the growth rates of real value added, total
employment and book value of capital between census years (between 1972&1977,
1977&1982, and 1982&1987).  The growth rate is computed as the difference divided by
the average.  The deciles are computed on basis of the average of TFP at the beginning and
end of the time interval.  Each plant is assigned a ranking on basis of its relative standing
within its four-digit industry.  In computing the exit rates, the plants were assigned into
productivity deciles according to their TFP in the beginning of the time interval.  A plant
was counted as having exited if it was not observed in any industry in the following census
year. 

First, one should check the model's more obvious implications.  Do the more productive

grow faster? Are they less likely to exit?  The first three columns of Table 2 report the growth

rates of real valued added, total employment and capital stock for each decile.  The fourth column

reports the rate of exit over the next five years.  The growth rates are increasing in productivity

while the exit rates are falling.  This verifies both the model's obvious implications and that these

measures of TFP are indicative of the plant's underlying competitive position. 

  One can test the hypothesis that industries with more rapid technical change exhibit larger

TFP ratios by regressing of the mean TFP ratio of each industry on the productivity growth of
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each industry and one finds a positive and highly significant relationship:  

(Number of Observations = 336)

where the subscripts it denote industry and time, respectively, TFPgrowth is the growth of mean

TFP, and the standard errors are reported in parentheses.

Such an approach may be problematic.  Both the TFPratio and TFP growth are measured

with error and errors in measurement may be correlated.  Therefore, I group the data to

circumvent this problem.  The 21 textile industries can be grouped into three groups according

to their productivity growth: fast, medium and slow.  Under this methodology, the hypothesis that

the fast group actually has faster productivity growth than the slow group is reasonable despite

the presence of measurement error.  We can then compare the average TFP ratio of these two

groups in each year (let FTFPratio and STFPratio denote the average TFP ratio for the fast and

slow groups, respectively).  Furthermore, this grouping can be done according to the three

different measures of aggregate productivity growth.  Figure 4 presents the average TFP ratio in

each year for the fast and slow groups, where the grouping is based on mean productivity growth.

The TFPratio of the fast group exceeds the TFPratio of the slow group in every year.
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Figure 4: TFP Ratios of the Fast Productivity Growth Group vs. the Slow Productivity
Growth Group, Grouping based on The Growth of the Mean of Industry
Productivity

The extent to which this is a statistically significant relationship can be tested through the

following autoregression:

(Number of Observations = 210)

Here I  is an indicator variable, taking on the value of 1 if the industry was in the fastF

group, zero otherwise, and mF and mS are the mean TFPratios for the fast and slow group

respectively.  Industries with medium productivity growth have been dropped from the

regression.  The standard errors are reported in parenthesis.  The fact that the coefficient on I  isF

positive and statistically significant indicates a positive relationship between productivity growth

and the TFPratio, as predicted.  This is consistent with the hypothesis that productivity growth

through creative destruction is causing dispersion in productivity levels.  



     Specifically, for a model of productivity growth through the representative plant, see25

Appendix III of this paper.  Caballero and Jaffe (1993) develop a model in which productivity
is realized through new products of improved quality, which are imperfect substitutes for old
products.  The distribution of consumption across relative product qualities is determined by only
the preferences of the representative consumer.
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With regards to alternative explanations, vintage capital models predict this result if the

unit of observation is a machine.  It is not clear what they predict at the plant level.  Both models

of productivity growth through the representative plant and models in which plants differ because

of product differentiation leading to a downward sloping demand curve predict no relationship

between the rate of technical change and productivity dispersion.   25

The robustness this result was tested by using different measures of total factor

productivity as well as labor productivity and the three different measures of industry

productivity growth.  It is a robust result.

VI. Conclusion

Schumpeter argued that monopoly power is good for productivity growth because it

allows the innovator to appropriate the returns from his innovation, thereby increasing the

incentive for a firm to perform R&D which in turn increases the rate at which the technology

frontier shifts outward.  In contrast, developmental economists often argue that monopoly power

reduces the level of productivity by allowing the inefficient to remain in operation and thus

increasing the dispersion in productivity levels.  That is, there is a time consistency problem that

has been referred to as the Schumpeterian tradeoff.  This tradeoff is intrinsically linked to the time

evolution of the distribution of plants across productivity levels.  

This paper has characterized the dispersion of productivity levels on the basis of industry



     In the Cobb-Douglas case with b  = 1, Proposition 2 tells us that TFPratio = (r/*+1) .26 $
t+x

Letting * = .1, r = .03 and $ = .5 then the TFPratio = 1.14, which is much smaller than
anything observed.
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characteristics under the assumptions of perfect competition and exogenous technical change, i.e.,

in the absence of a Schumpeterian tradeoff.  The technological frontier shifts outward

exogenously.  Plants are willing to pay sunk costs to get to the frontier because plants at the

frontier earn rents.  The model is broadly consistent with empirical evidence.  It predicts the

relationship between technological change and dispersion in productivity levels for one industry.

Furthermore, it provides a non-externality based explanation of S-shaped diffusion.  This model

may provide a useful benchmark of comparison for analyzing how the Schumpeterian tradeoff

plays out in different industries.   

    Provided there is technical change, my model predicts that (1) plants within an industry

simultaneously enter, expand and exit; (2) a substantial portion of job creation and destruction

is from existing plants changing their size rather than plants exiting and entering; (3) a substantial

portion of productivity growth comes from the more productive plants becoming bigger.

Therefore, my model is broadly consistent with the empirical evidence.  In the absence of

technical change this model predicts near convergence in productivity levels.   In contrast to26

models with an arbitrary plant size, the fact that the most productive plant continues to expand

after entry has ceased further compresses productivity levels.

This model predicts that industries with more rapid technical change, larger fixed costs

and larger adjustment costs will exhibit more dispersion in relative productivity levels.  The

prediction that four-digit textile industries with more rapid productivity growth will exhibit more

widespread dispersion in productivity levels is confirmed.  Therefore, large dispersion of
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productivity levels appears to be evidence of a healthy industry evolving towards higher levels

of productivity rather than evidence of a stagnant industry in which the lack of competition has

allowed firms to remain inefficient.  

Previous models in which plants differ have either departed from the paradigm of fully

rational behavior or have relied on increasing marginal costs or a downward sloping demand

curve to bound the output of individual plants.  Working within the framework of fully rational

behavior allows the relationship between the model's parameters and the equilibrium path to be

clearly established.  Allowing plants to expand provides a richer description of industry

evolution.  The monotonic relationship between investment and relative productivity levels

implies that plants' choose to expand their capital stock until their q falls to 1 and then choose to

reverse their investment, if possible, as q continues to fall.  As a result, the model can exhibit S-

shaped diffusion curves, which are not predicted by models of vintage capital (Phelps, 1962), or

models of vintage technology in which a firm is a job is a machine (Caballero and Hammour,

1994).  A technological spillover and its implication of a Schumpeterian tradeoff is not necessary

to explain S-shaped diffusion.     
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Appendix I: Table of Symbols

Symbol Meaning

Mathematical Notation

Fx

MF/Mx

x^

%

x  and xt- t+

The function F evaluated at x.

The partial derivative of F with respect to x.

(dx/dt)/x.

has the same sign as.

The left hand and right hand limit of x at t.

Section II

bt

bs

w and *

bM(K,L)

I

((I/K)

r

K *,I * st st

and y *st

F

Y , pt t

Bst

Ts

Ct

Gat

p*       

The productivity level of the most productive plant at time t.

The productivity level of a plant born at date s.

The per unit cost of labor and capital, respectively.

The output per unit time of a plant with productivity b, employing K and L
units of capital and labor, respectively.

The investment rate, i.e, dK/dt.

The per unit cost of installing a unit of capital.

The discount rate.

The optimal stock of capital, rate of investment and level of output chosen
by a plant born at s in time t.

The fixed cost of entry.

Aggregate output and the price of output at date t.

The rate of profits per unit time per unit capital for a plant born at date s in
date t.

The optimal exiting date of a plant born at s.

The rate of plants entering per unit time at t.

The age of the oldest plant in operation at date t.

The price that solves B(b ,p) = r.                                                         t
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Table of Symbols (Cont.)

Symbol Meaning

Section III

F  

µ

" and $

A

Ba

K * y * a a

aG 

R'(I/K)

p**

TFPratio      

The elasticity of demand.       

The growth rate of the cutting edge productivity level.

The elasticity of output with respect to labor and capital, respectively. (It is
assumed that "+$=1.)

("/w) $, simplifies the profit function."/$

The rate of profits as a function of the age of a plant.

The optimal capital stock and output of a plant of age a associated with the
solution to M3.

The optimal life span of a plant.

The per unit cost of installation in Proposition 7.  

The price that solves V  = F, if price remains constant (see Proposition 6).0

The ratio of the productivity levels of the most productive to the least
productive plant in operation at any given time.                                             
        

Appendix II

f(i)

at

 

q

0

The density of plants at productivity level i.

The productivity level of the least productive plant in operation 

The shadow value of capital.

The shadow value of the nonnegativity constraint on investment.
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     In the event that b  is not strictly monotonic (i.e. db/dt=0 over a finite interval), the27
t

notation becomes considerably more cumbersome but the logic is identical. 
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Appendix II: Proofs of Propositions and the Plants' Optimal Control Problem 

Property 3: 

T  is nondecreasing in b .s s

Proof:

Suppose not, then there exist b  and b  such that b >b  and T  < T  , which implies that thes s' s' s s' s

present discounted value of profits for b  would be nonpositive on [T , T ] but is nonnegative fors' s' s

b .  This is a contradiction because B is increasing in b , and both plants can set I  = 0 on [T ,T ].s s J s' s

Proposition 1:

p  is continuous and nonincreasing.t

For this proof, it is much more intuitive to compute aggregate output by integrating plant

output over productivity levels, rather than over the age of the plant.  Let f(i) = C /(db /dt),s s

where i = b , i.e., the productivity level of a plant born at date s.   f(i) is the number of plants pers
27

productivity level at i, i.e., the number of new plants per unit time at date s multiplied by the

reciprocal of the change in the maximum productivity level per unit time at time s.  Let at

represent the productivity level of the least productive plant in operation at t.  Therefore, 



     I am adopting the convention that a  or a(t+) represents the right hand limit of a at t, and28
t+

a  or a(t-) represents the left hand limit of a at t.  K  is continuous, because the value of ant- t

installed unit of capital is always less the F in equilibrium, which ensures a finite rate of
investment.

     If B  > 0 on an interval (t,t+,) then 29
J

Conversely, if B  < 0 on an interval (t,t+,) then J
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Proof:

I shall begin by proving that price is continuous:

because b  and K  are continuous.   Therefore, if a  = a , one p  solves both equations and p  ist it t- t+ t t
28

continuous at t.   If I can show that a  = a  for all t, then p  is continuous.   t- t+ t

Because a  is increasing, bounded above by b , and below by 0, the right and left handt t

limits of a  must exist, and therefore the right and left hand limits of p  must exist.  Furthermore,t t

if a  … a  then a  < a  and p  < p , that is, a mass of plants must have exited at time t causing ant- t+ t- t+ t- t+

upward jump in price (plants only enter with cutting edge technology, therefore a  cannot fall).t

If I can show that a  < a  is inconsistent with i 0 (a ,a ) maximizing profits, then price must bet- t+ t- t+

continuous.  

There exists an , such that for all J 0 (t,t+,) either B(i,p ) > 0 or B(i,p ) < 0, because pJ t- t-

< p .  If B(p ) > 0 then exiting forgoes positive profits.   If B(i,p ) < 0, there exists an , such thatt+ J t-
29



The details of this argument will be suppressed for the rest of this proposition.
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for all J 0 (t-,,t), B(i,p ) < 0 which implies that exiting at t-, avoids negative profits on (t-,,t).J

Therefore, if p  jumps upward at t, no plants should exit at t, implying that p  does not jumpt t

upward at t.  Therefore, p  and a  are continuous functions of time.  t t

I shall now prove that p  is nonincreasing.  Suppose not.  There exists p  and p  such thatt t t+*

p  > p , because p  is not nonincreasing.  Furthermore, there exists p  = max[p ] on [p ,p ]t+* t t t+) J t t+*

with p  > p  which implies that a  > a  because an increase in price can only be brought aboutt+) t t+) t

by plants exiting.  Let i , (a ,a ) which implies that T  0 (t,t+)), where T  denotes the date att t+) i i

which i exited.  If B (p ) > 0 there exists , > 0 such that B (p ) > 0 for all J 0 [T ,T +,] whichi T(i) i J i i

implies that i forgoes positive profits by exiting at T .  If i was making a profit when it exited, iti

would have made more money by staying in business longer.    

If B(i,p ) < 0 then there exists an , > 0 such that B (p ) < 0 for all J 0 [T -,,T ], whichT(i) i J i i

implies that i suffered negative profits by exiting at T rather than T-,.  If i was losing money at

T, it would have lost less money by exiting earlier. 

If B (p ) = 0 => B (p ) > 0, because p  # p  and i < a .  Therefore, there existsi T(i) a(t+)) t+) T(i) t+) t+)

, > 0 such that B (p ) > 0 for J 0 [T ,T +,] which implies that a(t+)) forgoes positivea(t+)) J a(t+)) a(t+))

profits by exiting at T  = t+) .  If i was breaking even when it exited, then a more productivea(t+))



48

plant which exiting later when price was higher was making money when it exited.  Therefore,

this plant would have made more money by exiting later.  If B(i,p ) is greater than, equal to orT(i)

less than zero, at least one plant is not exiting at the optimal time.  Price must therefore be

nonincreasing in order to be consistent with optimizing behavior on part of plants. Q.E.D.

The Plant's Problem 

In this section, I develop the plant's problem, M2 and M3, as a standard optimal control

problem. 

(M2)

The corresponding present value Hamiltonian is:

The first order conditions are:

Because
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either 0 = 0 => I $ 0 and q $ 1 or 0 > 0 and I = 0.

Suppose q > 1, then 

By the implicit function theorem, for I /K  > 0 there exists n such that I/K = n(q). If q # 1 thenJ J

let n(q) = 0.  Additionally 

=>

That is, the larger the value of an installed unit of capital the greater the optimal rate of

investment.

The first order condition with respect to the state variable yields:

(eq. #A.1)

The product rule yields:

(eq. #A.2)

Substituting eq A.1 into A.2 yields:
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and

Performing the integration yields:

(eq. #A.3)

Note that I am invoking the transversality condition that q e  = 0, which is givenT(s)
-r(T(s)-t)

by the fact that T  has been chosen optimally and the opportunity cost of an installed unit ofs

capital is zero.

Suppose that B  is a positive constant, property 4 implies that T  = 4, and equation A.3J s

implies that q  is a constant.  Therefore, equation A.1 impliesJ

0 = rq - B - n(q) ('(n(q)).2

Note that term -n(q) ('(n(q)) is less than zero for all q > 1 and equal zero for q = 1.  Therefore,2

If B = r then q = 1 or q > 1, If q > 1 then I/K > 0.

If B > r then q > 1.

If B < r then q < 1 or q > 1.  If q > 1 then I/K > 0.

In order to disprove that possibility that q > 1 when B # r, I prove the following claim.

Claim: 

If B # r then I/K = 0 earns a larger present discounted value of profits than 

I/K = R > 0, and therefore q # 1.  

Proof: 

If I/K = R, then it is straight forward to show that K  = K e .t 0
Rt

Let V(R) and V(0) denote the present discounted value of profits if I/K = R and I/K = 0,
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respectively.  

V(0) = * BK e dt  = K B/r.4 -rt
0 0 0

V(R) =  * (BK  - RK  - RK((R)) e dt, 4 -rt
0 t t t

which is non positive if R $ B and the claim is trivial, therefore from now on I assume that 

R < B, and it follows that:

The claim that V(0) > V(R) is equivalent to: 

which must be true because RB < rR.  Therefore,

if B = r, then q = 1; 

if B > r then q > 1; and 

if B < r then q < 1. 

I will now demonstrate how the value of the plant changes as certain parameter value

changes in the context of M3.  Provided V is differentiable, I can invoke an envelope theorem

yielding:

and



     See Seierstad and Sydsæter for the mathematical statement of this theorem (1987, page30

216).  If one objects to assuming that V is differentiable, then proving continuity and
monotonicity of V in the relevant parameters is straightforward, but tedious.  The main idea is
simple.  Suppose there is a change in a parameter value that increases the value of the firm
holding the investment path fixed.  Because the old investment path is available at the new
parameter values, the new investment path must do at least as well as the old investment path.
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where the inequalities become strict provided aG > a.  30

In the context of Proposition 7 (((I/K) = R'(I/K)),

and strictly greater than zero if q  > 1.  That is it is strictly greater than zero provided it is optimal0

to have positive investment.   
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